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Abstract. The two-point connected correlation function, or wavevector-dependent suscepti- 
bility, of the ferromagnetic lsing chain in a random field is calculated exactly at any 
temperature, for a two-parameter family of diluted symmetric exponential distributions of 
the magnetic fields. Thermodynamic properties of this model have been derived in a 
previous work by the authors. Besides the correlation function itself, the solution provides 
exact results for the (usual) susceptibility, the correlation length and the Edwards-Anderson 
parameter. The low-temperature regime is examined in full detail: we obtain in closed 
form the limit value at zero temperature of various quantities, and the first correction to 
this limit, which behaves linearly with temperature. The correlation length is discontinuous 
at zero temperature. We also derive the scaling form of the correlation function for small 
p, where the dilution p is the probability for a spin to be subjected to a non-zero random 
field. Even in this limit, the correlation function is more complicated than the simple 
Lorentzian predicted, e.g., by mean-field theory. 

1. Introduction 

The Ising model in a random magnetic field has been the subject of much recent work. 
Its main interest originates in the presence of both frustration and  randomness. There 
can therefore exist numerous metastable states, just as in spin glasses, which bring 
much difficulty in the analysis of both thermodynamic and dynamical properties. 
Experimental realisations of random-field Ising models are provided by diluted anti- 
ferromagnets [ 11. The usual fitted form of their structure factor (correlation function) 
is the superposition of a Lorentzian and a Lorentzian squared (see e.g. [2]). 

Even in one dimension, the random-field Ising model is exactly soluble only for 
very few particular distributions of the random magnetic fields h, .  The symmetric 
binary distribution ( h ,  = *H) has been considered by Derrida and  co-workers [3], 
who have evaluated the energy and entropy at zero temperature. Grinstein and 
Mukamel [4] have calculated both the thermodynamic properties and  the two-point 
correlation functions, at any temperature, for a distribution, given below in equation 
(1.41, where the fields are either zero, or plus or minus infinity. We also mention 
several related works. The limit where the ferromagnetic coupling J is much larger 
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than the random fields has been investigated by Derrida and  Hilhorst [5]. It has also 
been shown that some fluctuating quantities, such as the local fields, may have a fractal 
o r  Cantor-like support [6-81. More recently, the energy and two-point correlation 
function of a one-dimensional lattice gas model in a random potential at zero tem- 
perature have also been investigated [9]. 

In a previous publication [lo], the authors have analysed the thermodynamic 
properties at any temperature for exponential distributions of the random fields, both 
symmetric and non-symmetric, and  with dilution. The method used has been introduced 
by one of us [ 11,121. It can be applied to a large class of disordered one-dimensional 
systems, and yields an exact solution for a specific form of the distribution (usually 
exponential) of the random variables of the problem. Diluted randomness [13], as 
well as random interactions with short-range correlations [ 141, can also be treated by 
this approach. The correlatior, functions of some linear problems, such as the tight- 
binding Schrodinger equation or  harmonic chains with random masses, can also be 
determined using the same approach [12,13]. In this paper, we present the calculation 
of the two-point function X ( q )  of the random-field Ising model considered in [lo]. 
We first need to recall the definition of this quantity. 

For each realisation of the random fields h,, the usual correlation functions, or 
thermal avcrages, denoted by brackets, such as (U,) or depend on all the fields. 
An ensemble averaging over the distribution of the random fields, denoted as usual 
by a horizontal bar, is necessary to produce well behaved translationally invariant 
correlation functions. 

We will restrict ourselves to the case of the two-point correlation function. There 
are two inequivalent ways of defining such a quantity, namely 

(1) the connected correlation function X (  q ) ,  defined by 

(2) the full correlation function S ( q ) ,  defined by 

(1 . lb )  

The first of these quantities is a generalisation of the susceptibility, and  characterises 
the response of the system to a modulated external perturbation. Hence X ( q )  is also 
termed the wavevector-dependent susceptibility. The second definition corresponds 
to the quantity measured in scattering experiments. S ( q )  is also referred to as the 
magnetic structure factor. 

The correlation ,yo at coinciding points is related to the well known Edwards- 
Anderson order parameter 

The aim of this paper is to derive the exact expression of the correlation function 
X ( q )  for the specific class of random field distributions already considered in [lo]. 
Setting 

hn = H x ,  H > 0, -x< X, < +CC ( 1 . 3 ~ )  

the distribution E ( x n  )dxn  of the dimensionless reduced fields x, has the following 
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'diluted symmetric exponential' form: 

i ( x )  =-Pe-l'l+ r S ( x )  with r = 1 - p .  (1.36) 
2 

The dilution probability p and the field strength H are two arbitrary parameters. 
In  the H = cc limit, the above distribution simplifies. Indeed, if the variable x, 

vanishes, so does the field h,. If x, # 0, h, is infinite in absolute value, with the sign 
of x,. Hence the distribution of the random field reads 

-a2 with probability pi2 

+X with probability pi2. 
h , = (  0 with probability r (1.4) 

As recalled above, this limit case has been studied, using a direct enumeration approach, 
by Grinstein and Mukamel, in [4]. 

The set-up of this paper is as follows. In  Q 2, we present some general formalism, 
showing in particular how the correlation function x ( q )  can be evaluated as a suscepti- 
bility, namely by differentiating the free energy WRT 'source' terms, to be added to the 
magnetic fields. Section 3 is devoted to the exact calculation at any temperature of 
the correlation function for the distribution (1.3) of the random fields. Its first part 
presents an  alternative derivation of the free energy, already studied in [ 101. The final 
result involves the solution of coupled difference equations for six sequences. Section 
4 contains a detailed analysis of the low-temperature behaviour of the correlation 
function. We consider in particular quantities such as the susceptibility, the correlation 
length, and the Edwards-Anderson order parameter. The final results are given in Q 5 :  
for each quantity, we obtain in closed form both the T = 0 limit value, and the first 
correction to it, usually linear in temperature. Section 6 presents a discussion. 

2. Generalities 

The purpose of this section is to present the general formalism needed for the evaluation 
of the correlation function x ( q )  as a susceptibility. 

We consider the one-dimensional Ising model in a random field, with the 
Hamiltonian 

We restrict ourselves to the ferromagnetic case J > 0. The fields h, are independent 
random variables, with a common probability distribution R (  h)dh. We first recall 
briefly the transfer matrix formalism for the free energy of the model. The partition 
function ZN at temperature T = 1/p of a finite chain having N sites with periodic 
boundary conditions is given by 

N ePJ+Ph,,  e-PJ+Ph,,  
ZN = tr " = I  fl T, Tn = (e-PJ-Ph,,  ePJ-Ph, ,  

The quenched free energy of the model is therefore equal to the Lyapunov exponent 
of the infinite matrix product 

N 1 
- P F =  lim -1n tr n T,. 

N - x  N , = I  
(2.3) 
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A convenient way to estimate this quantity is to introduce a sequence of vectors (x,,, y,,) 
such that (x,,, y , )  is the image by T, of (xn-l ,  Y " - ~ ) ,  and to considerthe ratios pn = x , / y , ,  
which obey 

When n becomes large, the distribution of pn > 0 reaches a stationary limit, invariant 
under the transformation (2.4). The free energy is then given by 

-PF = -PJ  - p6+ (In(p, + e20J)). (2.5) 
From now on, we focus our  attention onto symmetric field distributions: R (  h) = R(  - h ) .  
Then the average field 6 vanishes, and it is advantageous to perform the change of 
variable 

1-z, 1-p, 
1 + z, 1+Pn 

z, = - P n  =- 

which maps the domain p n  > 0 onto -1 < z ,  < i l .  The transformation (2 .4)  is now 

and  the free energy is given by 

- P F  = ln(2 cosh P J )  + In - ( 
with the notation 

T = e-2F = tanh PJ t ,  = tanh ph,. (2.9) 
The easiest way of evaluating the correlation function x( q )  is to add  the following 

deterministic 'sources' to the random fields 

Phn + Ph L = Phn + 7, 7, = x einq + y e-'"q. (2.10) 

Let zk denote the variables associated with the modified fields hk, and F' be the 
corresponding free energy. It is then easily shown that we have 

(2.11) 

In order to obtain for this quantity an expression analogous to (2 .8) ,  the expansion 
of (2.7) u p  to second order in the 7, is needed. Let zk = z, + U, + U, +. . . , where z ,  
is the value in the absence of the sources v,, U, is linear in the sources, U, is quadratic 
in them, etc. A simple but lengthy computation yields 

(2 .12a)  

(2.12b) + 2 7 ( T Z , - l  - r n ) u , - l ~ n + ( ~ a ~ ' , - l  - I)(Tz,,-, - t , ) ~ , ] .  2 

If we now introduce the following expansion in X and Y :  

U, = x e'"qu;+ y e-'"qu, 

U, = x 2  e2inquz + ~ X Y V O ,  + Y* e-2'"qv; 
(2.13a) 

(2.13b) 
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the five random variables U:, U,, U:, U:, v i  have stationary distributions as n becomes 
large, just as pn or z,. Moreover, (2.11) can be rewritten as 

(2.14) 

Hence U: and U, are not needed to evaluate the correlation function. Moreover, if 
we consider only real values of the wavevector q, U: is the complex conjugate of U,. 
Hence we are left with two random variables, namely U, and U:, which obey the 
recursion relations 

U ;  = 7 e'qq,u,-, + z', - 1 ( 2 . 1 5 ~ )  

with the notation 

1-t; tn 
( P n  = Y n  = (1 - 7Z,-' t , ) *  1 - 7 Z , - l t n  ' 

(2.16) 

Here and in the following, cc denotes the complex conjugate of an expression. 
A last comment on the above formalism is in order. The RHS of (2.14) seems to 

be singular as z, -$ -1, but no singularity at all is actually present. Indeed (2.7) implies 
that (1 + z,) is proportional to ( t ,  - l ) ,  for fixed znPl. The quantity U: brings one factor 
of ( t ,  - 1) in the numerator through (P,, and U: and U, bring two such factors. These 
cancel exactly the factors of (1 + z,) in the denominators. This remark will be useful 
in the next section. 

Equations (2.14)-(2.16) will be the starting point of our exact calculation, presented 
in 9 3, of the correlation function for the diluted symmetric exponential distribution 
(1.3) defined in 9 1 .  We end up this section by illustrating the above formalism in the 
(trivial) case where there is no random field. Then we have (a,) = 0, (gman) = r ' m - n ' ,  
and no averaging over disorder is needed. Hence both correlation functions are 

(2.17) 

This result for x ( q )  is easily recovered from (2.14), since it follows from (2.7) and 
(2.15) that the stationary values of the above-defined variables are z, =0,  U;= 
-( 1 - re i4)- '  and U, = 0. 

3. Exact solution at finite temperature 

This section is devoted to an exact determination of the correlation function x ( q )  for 
the distribution (1.3) of the random magnetic fields. We will use the general formalism 
introduced in 9 2, and begin with a determination of the free energy of the model. 
The present approach is slightly different from that of [lo], where non-symmetric field 
distributions were considered as well. For both the free energy and the correlation 
length, the key point is to integrate exactly over the random fields. This method yields 
three-term recursion relations for six unknown sequences. A very analogous structure 
is met in the study of the response functions of some linear problems, such as harmonic 
chains and tight-binding electrons [ 12, 131. 
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3. I .  The free energy 

The free energy is obtained by expanding (2.8) as 

l - T k  
- p F  = ln(2 cosh p J )  + - ck 

k a ? , e v e n  k 

where ck denote the moments 

Ck = ( Z X ,  

(3.1) 

(3.2) 
the average being performed WRT the stationary distribution of z , .  It follows from 
(2.7) that, if the sign of all the random fields h,  is changed, so is the sign of the z, .  
Hence, if the random field distribution is even, so is the distribution of the variable 
z , ,  and the moments ck vanish for odd values of k. This property has been used in 
the derivation of (3.1). More generally, all the quantities to be considered hereafter 
will have analogous simple parity properties. 

The ck can actually be derived from the recursion relation (2.7) by means of the 
following method, which will be used extensively hereafter. Consider z,(x,) as a 
function of the random variable x,, through the notation (1.3a), at fixed z , - ~ .  One 
has then 

(3.3) 

with the notation 

A = 2 P H .  (3.4) 
Introduce now the integrals 

(3.5) 

It is easily shown, by means of two integrations by parts using (3.3), that these quantities 
obey 

A’ 
Ik = ( T Z , - ~ ) ~  + - k [  ( k  + 1) Zk+> + ( k  - 1) - 2 kZk] .  (3.6) 4 

Let now Ck denote the averages 

Ck = ( L ( Z n - 1 ) )  ( 3 . 7 ~ )  

WRT the stationary distribution of z , - , .  The Ck can also be viewed as the following 
‘restricted moments’: 

Ck = (z:L,,*o (3.76) 

where the average over the last random variable x, is performed WRT the exponential 
component dx,/2 of the distribution (1 .3b) ,  rather than WRT the full ‘diluted’ 
distribution. 

The definition (3.5) and the recursion (3.6) lead to the following coupled recursive 
equations: 

( 3 . 8 ~ )  

(3.86) 

ck = rTkck + PC, 

C k  = T ‘ C ~  + - k [  ( k + 1 ) C k + z  + ( k - 1 ) C k W 2  - 2 kc,]. 
A 2  
4 
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More precisely, ( 3 . 8 ~ )  is a simple consequence of the existence of two components in 
the distribution (1 .3) ,  and the definition (3.76), and (3.86) follows directly from (3.6). 
Equation (3.8) can be equivalently rewritten as 

(3.9a) 

(3.96) 

The parity of the distribution of z, implies that the averages Ck vanish for odd 
values of k, just as ck. It follows from their definition that co = CO = 1 .  Moreover, since 
the variables z, lies between -1  and +1, and its distribution contains no delta function 
at i l ,  both sequences ck and Ck go to zero as k + m .  On the other hand, the large-k 
behaviour of the general solution of (3.9) can be extracted by replacing the difference 
equation (3.96) by the following differential equation: 

(3.10) 

This equation implies that two independent solutions of (3.96) behave as k"A and 
k-'". Therefore the condition that ck and Ck go to zero as k + selects the decreasing 
solution, and the above set of boundary conditions determines a unique solution to (3.9). 

The expression (3 .1 )  of the free energy can be largely simplified by means of (3.96) 
as 

A 2  
- P F  = ln(2 cosh P J )  + p -  ( 1  - C2). ( 3 . 1 1 )  4 

This result coincides with that given in [lo], where it was obtained in a slightly different 
way. We mention that the sequence ck was denoted there by d k ,  and H by H,. 

3.2. The correlation function 

By analogy with the previous subsection, we first expand the expression (2.14) of the 
correlation function x( q )  as 

(3.12) 

with the definitions 

gk = ( k - l ) e k + 2 f ,  ek = (u:u,z: -* )  fk  =(u:z : - ' ) .  (3.13) 
In order to evaluate these quantities, we follow the lines of the calculation of the 

free energy exposed in the previous subsection. Consider the variables (P,, and Y, 
defined in (2.16) as functions of x,, at fixed z,-'. One has then 

We are thus led to define the integrals 

(3.14) 

(3.15a) 

(3.156) 
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Two integrations by parts using (3.14) then yield 

A’ 
Jk,/ = (72, - ) k - ’  + - [ ( k  4- I ) (  k + / + 1 )Jk+z,, + ( k  - /)( k - f - 1 ) J k - l ~  - 2( k‘ - /( f - 1 ))Jk,/] 4 

( 3 . 1 6 ~ )  

A 2  
Kk = - [ ( k  + 1 ) (  k -I- 2 )  &+Z + ( k  - 1 ) (  k - 2 )  Kk-2 - 2 k 2 &  + 2( k $- 2)Jk+2,2 - 2( k - 1 )Jk,z]. 

4 
(3 .16b)  

We now define the averages 

dk =(U,Z”,-’) ( 3 . 1 7 ~ )  

Dk = T(u n - I J k . l (  zn-I )) = T ( U , - I Z ~ , - I  (cn)x, ,  f O  (3 .17b)  

(3.17 c) 2 +  Ek = T2(  u;-l U i- I J k , 2 ( Z n -  1 ) )  = 7 ( U n  - I U,- ~Zk,-’(c:)x~, + O  

Fk = T(u:-lJk,l ( z n - l ) ) +  7 (Un-1  U n - 1  K k ( Z n - l ) )  

= ( ~ v : - l z n  pn + T 2 U l n - l U , - 1 Z ~ - ’ ( O n Y n ) , ~ , # O  

2 +  - 

(3 .17d)  

(3 .17e)  

It turns out that the separate evaluation of ek,  E k ,  fk, and Fk will not be needed. 
These quantities will indeed only show up hereafter through the combinations gk and 
Gk. Equation (3.16) implies the following coupled recursive relations for the four 

dk = c k + l  - ck-l+ e’‘( rTkdk + PD,) ( 3 . 1 8 ~ )  

(3 .18b)  

( 3 . 1 8 ~ )  

(3 .18d)  

k - 1  

Gk = ( k  - 1 )  Ek .f 2Fk. 

quantities dk, Dk, gk, and Gk 

A’ 
Dk = Tkdk +- [( k +  l ) ( k  + 2)013+2+ ( k  - 1 ) (  k -2)Dk-2-  2k’Dkl 

4 

gk = rTkgk +pGk + Sk+l - Sk-l 

Gk = Tkgk + - [ ( k +  l ) ( k+2)Gk+,+  ( k  - l ) ( k  -2)Gk-2 - 2k’Gk] 

with the notation 

A’ 
4 

s k =  k(dk+CC+Ck-l-Ck+l). (3.18e) 

The large-k behaviour of the general solution of the above equations can be derived 
by going to differential equations, analogous to (3.10). This procedure shows that two 
independent solutions for the four sequences kdk ,  k D k ,  kgk ,  and kGk,  behave as kIiA 
and k-”’. On the other hand, the remark below (2 .16)  on the regularity ofthe expression 
(2.14) implies, after expansion in powers of z,, that the four above mentioned sequences 
go to zero as k - a .  For instance, the finiteness of the quantity 

(3 .19)  

implies that dk decays faster than l / k ,  i.e. kdk goes to zero as k - m .  Hence the 
decreasing solution is always selected, and (3.18) determines d k ,  Dk,  gk, and Gk in a 
unique way. Just as Ck and c k ,  gk and Gk are real, and vanish for odd values of k, 
while dk and Dk are complex, and vanish for even values of k. 
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Finally, the expression (3.12) of the correlation function x ( q )  can be simplified by 
means of (3.18c, d )  as 

(3.20) 

Just as in the case of some linear systems [12, 131, the correlation function can also 
be expressed in terms of c k  and dk only. Indeed, by making use of (3.9) and (3.18), 
and noticing that the difference operator of (3.18d) is the adjoint of that of (3.8b), we 
can derive the following expression, quadratic in the c k  and dk 

(3.21) 

To summarise this section, the evaluation of the correlation function x ( q )  requires 
the following three steps. The appropriate boundary conditions have been discussed 
above. 

( 1 )  Evaluation of c k  and Ck by solving (3.9). These real quantities vanish for odd 
k. The free energy F is then given by ( 3 . 1 1 ) .  

(2) Evaluation of dk and Dk by solving (3.18a, b) .  These complex quantities vanish 
for even k. The auxiliary sequence SI, is then given by (3.18e). This real quantity 
vanishes for even k. 

(3) Evaluation of g ,  and Gk by solving (3.18c, d ) .  These real quantities vanish for 
odd k. The correlation function x ( q )  is then given by (3.20). 

The above expressions can be checked in the absence of random fields (i.e. either 
H = 0, or p = 0). If H = 0, the only non-vanishing quantities are 

1 T L  
gz = G2= 

1 -27  cos q + 7 *  1-27 cos q + r2 

If p = O ,  the non-zero values of c k ,  dk, s k ,  and gk are still given by (3.22), but the 
sequences ck, Dk, and Gk remain non-trivial. The expected result (2.17) for the 
correlation function is of course recovered in both cases. 

3.3. The correlation length 

The correlation length 6 is defined as the asymptotic decay rate of the correlation x,,, 
defined in ( 1 . l a )  

~ ~ , ; ~ a , ,  (3.23) 

where the prefactor a,, has slower variations than any exponential, like e.g. a power 
law. Hence the quantity 

J z e - 1 / €  (3.24) 

is given by the location of the singularity of the correlation function x ( q )  in the ei4 
plane which has the largest modulus inside the unit circle. The nature of this singularity 
is related to the asymptotic behaviour of the prefactor a,,. 

In the absence of random fields (i.e. p = 0 or  H = 0), (2.17) yields 

5 = 7 = tanh PJ. (3.25) 
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In  the H =CO limit, already studied in [4], we have 

5 = rr (3 .26)  

where r is the probability for the random magnetic field acting on any spin to vanish. 
Equations (3 .25)  and (3 .26)  show that, both for H = 0 and H = 00, the correlation 
length has exponentially small corrections to its T = 0 value at low temperature. It 
will turn out that the situation is quite different for finite values of H .  

For generic values of the parameters p and H,  the function x( q )  is singular whenever 
the procedure summarised below (3 .21)  fails. This possibility originates in the boundary 
condition at infinity. The only equations which involve an el4 dependence in their 
homogeneous terms are (3 .18a,  b )  for the sequences dk and Dk. Since the solution is 
determined by the condition that kdk and kDk go to zero as k + 00, the problem becomes 
ill defined when the generic solution of the linear homogeneous equation for Dk, namely 

( 3 . 2 7 )  

decreases for large k. Hence 5 is determined as the number with largest modulus 
inside the unit circle, such that (3 .27)  admits a solution which is both regular at k = 1, 
and decreasing at infinity. This solution is obviously defined up to a multiplicative 
constant. It turns out that 5 is real positive, and lies between the bounds (3 .25)  and 
(3 .26)  corresponding to H = 00 and H = 0, respectively: rr S 5 S r. Numerical data on 
the correlation length will be presented in 0 5.2, after the study of the low-temperature 
limit of this quantity. 

4. Low-temperature behaviour: technicalities 

This section presents a detailed analysis of the low-temperature behaviour of the 
correlation function x ( q ) ,  starting from the exact expression, valid for any finite 
temperature, derived in 0 3.  We will follow the approach introduced in [lo], which 
makes an extensive use of Laplace transforms. 

The starting point of this analysis is the observation that all the non-vanishing 
moments and averages such as ck, c k ,  etc introduced in 0 3 have a smooth and very 
slow k dependence at low temperature. More precisely, the typical value of k at which 
all the quantities have their relevant variations are of the order of ko-  1 / 1 1  - e2p’, with 
the notation of ( 2 . 9 ) :  this scale is exponentially large at low temperature. We are thus 
led to introduce the scaled variable 

The second equality is valid up to exponentially small terms, proportional to 11. Such 
corrections will be systematically forgotten in the following, since we only aim at 
deriving the value at zero temperature of the physical quantities, and the first low- 
temperature correction, usually linear in T. The various sequences will be replaced 
by functions of y ,  after appropriate rescaling. The difference equations for these 
sequences, derived in 0 3,  will becomes second-order differential equations, to be solved 
by the Laplace transform technique, taking special care of boundary conditions. 
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4.1. The function C and the free energy 

For the sake of completeness and notational consistency, we first repeat the analysis 
of the low-temperature behaviour of the free energy, already presented in [ l o ] .  We 
transform (3 .9 )  into differential equations for the functions c (y )  and C ( y ) ,  scaled 
limits of the sequences ck and ck under the change of variable (4 .1 ) .  We obtain 

c ( y )  5 C ( y )  - rC"(y )  ( 4 . 2 ~ )  

C Y y )  = U o ( Y ) C ( Y ) .  (4 .2b )  

Here and in the following, primes denote differentiations WRT y. The 'potential' 
function u, (y )  reads 

In the low-temperature limit, we have A +CO, and hence both u ( y )  and U&) go to 
$ ( y ) ,  Heaviside's step function, except in a small region of size 1 / A  around the origin. 
Thus the solution of (4 .2)  which goes to zero for k + CO, i.e. y + +CO, is such that 

(4.4) 

where C(, ) ,  C,,,, and C,,, are unknown constants. 

function in the following, namely 
The determination of these numbers involves two steps, which will occur for every 

( a )  the analysis of the crossover region around the origin; 
(b) the matching at y = y o  with the solution for finite values of k of the original 

difference equation. 

4.1.1. Function C, step (a).  The most systematic way of dealing with the vicinity of 
y = 0 is to use Laplace transforms. We define the Laplace transform L , ( z )  of the 
function C ( y )  by ( O <  Re z < 1 )  

r 

L,(z) = e'"C(y) dy J (4.5) 

and the Laplace transform of the function u o ( y )  with a slightly different convention 
( O < R e z < A )  

"2l,(z) = e-"'uo(y) dy. I 
An elementary calculation yields 

(4.6) 

(4 .7a )  

where 

(4.76) 
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is an analytic function in the whole complex plane. The differential equation (4.26) 
is then equivalent to (0 < Re s < A,  0 < Re(z + s) < 1) 

Z2L'(Z) = - 02lo(s)L,(z+s). I 2"ii (4.8) 

The connection with the constants C(l , ,  Ci2,, and C(3, introduced above is simple. It 
follows from the definition of these numbers that -C(3) is the residue of L,(z) at z = 1, 
and that L,(z) has a double pole at z=O, of the form -Ci1, /z2+C(2, /z .  It is advan- 
tageous to shift the s contour in (4.8) to the right of the pole at s = 1 -z, obtaining 
(1 -Re z < Re s < A )  

(4.9) 

This expression is well adapted to the analysis of the low-temperature limit, since the 
integral can be shown to be smaller by a factor of T 3  than the other terms. This 
property has already been used in [lo]. Hence we have 

This relation yields in particular 

(4.10a) 

(4.1 Ob) 

4.1.2. Funcrion C, step (b). In order to perform this step of the analysis, we notice 
that the R H S  of the difference equation (3.9b) is exponentially small in temperature, 
and hence negligible. The remaining equation is explicitly soluble, and yields 

(4.11) 

where y denotes Euler's constant. The comparison of the large-k behaviour with (4.4) 
and (4.10b) yields 

-1 
( Y o - Y / ~ ) ~ 0 ( 1 ) + % ( 1 )  

c,3, = 

( 4 . 1 2 ~ )  

(4.12 b )  
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We have made use of the following expansions: 

%!;( 1 )  = - 1  + 6(K2).  Q0(1)= l+-  Y + s 1 + ( q A - 2 )  
A 

( 4 . 1 2 ~ )  

The sk are defined by 

Their small-p behaviour has been derived in [ 101: 

s k  Ilnplk[l  - k y / ( l n p ) l .  
P-0 

(4.13b) 

We have in particular 

s, -- - ( l n p + y ) .  ( 4 . 1 3 ~ )  

Byinserting(4.12b)into(3.11),weobtain theexpansion F =  Eo-SoT-ToT‘/2+. . . 
P-0 

of the free energy, already given in [lo]. The ground-state energy Eo reads 

The zero-temperature entropy So is 

PH2& - Plln PlH2 S -  
O -  2(J + H)’ P - O  2(J + H)* ’ 

(4.14a) 

(4.146) 

The specific heat C( T) is linear in T at low temperature, with an amplitude 

( 4 . 1 4 ~ )  P u n  PI2H2 
T-O T 2 ( J + H ) ’  2 ( J + H ) ‘  P - 0  2(5+ H ) ~  * 

To = lim - - - pH (sr-s;+7r2/6) - 

4.2. The function D 

The first part of the low-temperature analysis of the correlation function x(q) deals 
with the complex quantities dk and D k ,  defined by (3.17a, b ) .  It turns out that only 
the leading T+ 0 behaviour of these quantitites is needed to evaluate the O( T )  
corrections to the correlation function. We first eliminate dk between (3.18u, b) ,  and 
transform the remaining equation for D,, into a differential equation for the unknown 
function D ( y ) ,  scaled limit of the quantities 

6, = kDk (4.15) 

under the change of variable (4.1). We end up  with 

(4.16) 

In  the T-, 0 limit, we have u ( y ) +  8 ( y ) ,  and (4.16) can be simplified, except in a small 
region around y = 0. For positive y ,  we have D”(y )  = D ( y ) ,  and hence the decreasing 
solution is 

D ( y )  = Q 3 )  e-’ y > o .  (4.17) 
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For negative y ,  we have 

where w 2  is a complex constant related to e'" through 

(4.18) 

(4.19) 

The solution of (4.18) is 

(4.20) 

where w denotes the root of (4.19) with a positive real part. 
Just as in the previous section, the determination of the constants D( l ) ,  D,,, and 

D(3) involves two steps. 

4.2.1. Function D, srep (a). We define the Laplace transform L,(z) of the function 
m y )  by 

L,(z) = eZyD(y) dy. (4.21) 

This definition is meaningful only for Re w < Re z < 1. The results which follow will 
be continued, if necessary, to the region Re w a 1 by analyticity in w. We also define 
for further reference the function 

I 
(4.22) 

and  its Laplace transform, in analogy with (4.6a) (0 < Re z < A )  

Qq(z) = e-zyuq(y) dy. (4.23) I 
An elementary calculation yields 

with 

(4.24a) 

(4.24b) 

For q = 0, these definitions coincide with (4.7). The differential equation (4.16) is then 
equivalent to (0 < Re s < A, Re w < Re( z + s)  < 1) 

(z* - w')L,(z) = -QZ(  1 - rz2)L,(z) 

+ I 
with the notation 

Q,(s)[(l - w 2 ) L D ( z + s ) + a ( z + s ) ( 1  - r (z+s)2)Lc(z+s)1 

(4.25) 

(4.26) 
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In the derivation of (4.25), we have used the equality ezy c ( y )  dy = ( 1  - rz2) L , ( z ) ,  
which follows from ( 4 . 2 ~ )  and (4.5). Notice that the first term on the RHS of (4.25) 
is cancelled out if the contour of the integral is shifted to the left of s = 0. Instead of 
doing so, we prefer to shift the contour to the right of s = 1 - z, along the lines of the 
previous section. Taking into account that the residues of L, ( z )  and L,(z) at z = 1 
are respectively -C(,, and - D ( 3 ) ,  we obtain (1 -Re  z < Re s < A )  

( z z  - wZ)L,( z )  

= - a z ( l  - r zZ )Lc ( z )+%, (1  - Z ) [ ( I  - w * ) ~ ( , , + a p ~ , ~ ~ ]  

+ j" 2 e,(s)[( 1 - w 2 )  L D ( z  + s) + a ( z  + s)( 1 - r ( z  + s)2)Lc ( z  + s )I .  
(4.27) 

For values of z such that Iz/ << A ,  the leading behaviour as T +  0 of the integral in 
(4.27) comes entirely from the term which contains Lc. By inserting the expression 
( 4 . 1 0 ~ )  for L,(s),  and performing the change of variable s = A t  in the integral, we are 
left with 

with the definition 

(4.29) 

This integral can be evaluated in closed form by using the expansions (4.76) and 
(4.246) of the functions fo and f,, respectively, as well as the formula 

X x'=- 
2i sin rt 1 + x  

0 < Re t < 1. 

We obtain 

w 2 r  - 1 
w4r2 

B D  =- [w2r+ ln ( l  - w Z r ) ] .  (4.30) 

The constants D( , )  and D,z,  are the residues of L D ( z )  at z = -w  and z = U ,  respectively. 
By inserting into (4.28) the value of C,31 given by (4.12u), we obtain, to leading order 
at low temperature 

ff w z r  - 1 +L) 
~ W D , ~ ,  - ( 1 + w D,,, = - ( r$D + 

1 -Yo  w(1-w) I - w  
(4.31) 

together with a similar equation, where D(, )  replaces D,,, , and the sign of w is reversed. 

4.2.2. Function 0, step (b). Going back to the difference equation (3.186), we notice 
that the expression between the square brackets is smaller by a factor of T 2  than the 
quantities dk or Dk themselves. In terms of the fi, introduced in (4.15), this is 

( k +  l)(fik+z- 6,) = ( k -  1 ) ( f i k  - 6 k - z ) [  1 + o( T 2 ) ] .  (4.32) 

This equation, which is still formally valid for k = 1, implies that the difference 
f i k  - f i k - 2  is also smaller than fik by a factor of T', and, going to the differential 
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formalism, that D’(yo) is smaller than D(y,) by a factor of T 2 .  Setting D’(yo)  = 0 in 
(4.20) yields 

D, ! eWYo = D ( - 1  , e-w-vn. (4.33) 

This equation, together with (4.31), yields, again to leading order in temperature 

with the notation 

A =  - 
( 1  - w’r)’ In(1- w 2 r )  

A ( 1  - y , )w4pr(  1 - w tanh ay,)  
(4.35) 

The leading low-temperature behaviour of the quantity SI,  defined in (3.18e), and 
entering the expression (3.20) of the correlation function, is easily derived from the 
above results: 

-2(1 - w 2 ) ( 1  - w 2 r ) 2  In(1 - w 2 r )  
A ( 1  - y,)prw4 cosh my,( 1 - w tanh wy,) 

SI = + cc. (4.36) 

4.3. The function G. 

We now perform the second part of the analysis of the correlation function, which 
deals with the real quantities gk and Gk, defined by (3.13) and (3.17e). In analogy 
with the evaluation of dk and Dk,  we eliminate gk between (3.18c, d ) ,  and derive a 
differential equation for the function G(y) ,  scaled limit of the quantities 

6, = kGk (4.37) 

under the change of variable (4.1). For convenience, we also introduce the function 
S ( y ) ,  scaled limit of the quantity Sk defined in (3.18e). We end up with 

(4.38) 

2 
A 

=[e i9(D(y)-  rD”(y ) )+cc]+-  c ’ ( y ) .  (4.39b) 

These expressions c m  be simplified in the T+O limit. For positive y ,  we obtain 
G“(y) = G(y) ,  and hence the decreasing solution is 

G(y)  = GL3) e-’ y > o .  (4.40) 
For negative y ,  we have 

eiq 

G”(y)=  -2(-D’(y)+cc) A 1 - re i4  (4.41) 

The expression (4.20) of the function D yields 

The determination of the constants Gill, Gi2)  and G ( 3 ,  involves the usual two steps. 
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4.3.1. Function G, step (a). We define the Laplace transforms of the functions G ( y )  
and S ( Y )  by 

L,(z )  = e‘”S(y) dy. (4.43) J L G ( z )  = e’”G(y) dy J 
These definitions hold for 0 < Re z < 1 and  Re w < Re z < 1 ,  respectively. Equation 
(4.38) is then equivalent to (0 < Re s < A, Re w < Re(z + s)  < 1) 

and the Laplace transformation of (4.39) yields 

2 
A 

L,(z) = - - z ( I  - r z ’ ) ~ , ( z ) + ( l  - r z 2 ) ( e ’ q ~ , ( z ) + c c ) .  (4.45) 

The function LD is given by (4.27), where the integral of L,(z+s) ,  being of relative 
order T 2 ,  can be omitted. By shifting the s contour in (4.44) to the right of s = 1 - z, 
we obtain finally (1 -Re  z < Re s < A )  

The unknown constants G( l )  and G(2j are such that the divergent part of the function 
L G ( z )  around z = 0 reads - G c 1 , / z 2 +  G( , , / z .  The first two terms of the T expansion 
of these numbers can be extracted from (4.46) through a lengthy but straightforward 
calculation. The unknown constant G(3j will be determined in step ( b ) .  The central 
part of the computation is the expansion of the integral 

1 
8 G  = - 2 % g ( s ) ( z  + s )L , ( z  + s) = 8, +: ($2 + 2 , z )  + . . . . (4.47) I :I 

The leading term is the following combination of integrals: 

2 H  21 =- [ ( rl ( w 2 -  1)( K - I )  +cc 
J + H  p (4.48) 

with (0 < Re t < 1 , O  < Re u < 1 ) 

These integrals can be evaluated using the expansions of the functions fo and fq, in 
analogy with the derivation of (4.30). Our final expression is 

(4.50) 

where 
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with 

N( N 2  - l ) r N  
1 2 0  1 2 1 - 1  

Xcri.1 =JP r c 
N z 2  ( N + l ) 2  

(4.51) 

is just the H = a3 limit of the correlation function, derived in the appendix, and given 
in closed form by (A10). This quantity appears here in a very different way. Notice 
that 2rI = x!Jr),o is nothing but the 1 = 0 term of (4.51), and that I is also the contribution 
that would come from the pole at U = 0 in the integral K ,  had we shifted the U contour 
to the left of that pole. 

The calculation of the correction terms 2*, 9, is more lengthy. It turns out that 
only the difference ,$z-23 will be needed in the following, and  that this difference is 
simpler to evaluate than each term separately. We prefer not to bother the reader with 
the building blocks of the derivation: they are complex integrals which resemble those 
of (4.49). We obtain 

where sI is defined in ( 4 . 1 3 ~ ) .  This quantity appears through the 6( T )  correction to 
C(3i, given by ( 4 . 1 2 ~ ) .  

The expression of ,y,L,(q) differs from that of X(x,(q) only by a logarithmic factor 

1 3 0 .  
-I I - 1  N ( N 2 - l ) r N I n ( N + I )  

( N f l ) ‘  X(LLI-3P r c 
N s 2  

The function q ( q )  can be expressed in a closed form as 

II ) ] + c c  

2 
q ( q )  =y (1  - C O ’ ) (  1 - u2r) w2r(u’r  -2)A -2w4r2+[u’r+ (1 - w2r),2] 

P‘ 

1 - w tanh wy, 

(4.53) 

(4.54) 

with the notation 

A = In( 1 - u 2 r ) .  (4.55) 

The first two terms in the square brackets in (4.54) come from the function Lc in 
(4.27), while the terms in the larger parentheses come from the amplitudes D,,, and C ( 3 ) .  

G( 1 )  = -G(3IaO( + a(l, (4.56a) 

The expansion of the other terms of (4.46) is easier. We finally obtain 

2 2 2 1 

PA PA A P 
a,,, = ---81 -z $ 2 + -  [ ei4 (D, , ,  -- Diol) +cc] (4.56b) 

2 2 1 
A , 2 ,  = - ,$3 - ; [ ei4 ( D, 3 i  - - D, Fi) + cc] , 

pA ’ P 
(4.56d) 

These expression involve the residue Q0,, and the finite part D(F), of the function 
L,(z)  at z=O:  L , ( z ) = D ( , , / z + D , . , + G ( z ) .  It is sufficient to know both of these 
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quantities to leading order in temperature. D(o, is just the constant term in the RHS 
of (4.20); D ( F ,  is easily evaluated from (4.34): 

(4.57) 

4.3.2. Function G, step (b). In the difference equation (3.18d), the expression between 
the square brackets is smaller by a factor of T2 than the other terms, such as the 
quantities gk or Gk themselves. Since we are only interested in the first two terms of 
the T expansion of the Gk, it is therefore legitimate to set the above-mentioned 
expression to zero. In terms of the 6 k  defined by (4.37), this condition is 

(4.58) 

Hence the quantity ( k  - I ) (  6 k  - 6.k-2) is a constant, equal to G2 = 2G2. We have 
therefore 

( k  + 1)( - 6 k )  = ( k  - 1)( 6 k  - 6 k - 2 ) .  

1 
G k = 2 G 2  - = G 2 ( l n 2 k + y ) .  

I s l s k - l , o d d  1 k + m  
(4.59) 

The final step consists in matching this result with (4.42), using (4.33). This leads 

( 4 . 6 0 ~ )  

(4.60b) 

to 

G(Y0) = G2Y = G(l,.YO+ G(2, 

G’(yo) = G2A = G(l ,+  K 
with 

( 4 . 6 0 ~ )  

Equations (4.56) and (4.60) finally yield 

(4.61) 

The calculation of the correlation function x ( q )  is now very simple. We insert 
(4.36) and (4.61) into (3.20), and use the expansion (4.12) of the quantities C(,,, %,( 1) 
and %;(I), to first order in l/A. The term proportional to K in (4.61) cancels the 
contribution proportional to SI. Moreover, all the contributions proportional to Euler’s 
constant y also cancel out. The zero-temperature result only originates in the integral 
21. In  the correction linear in T, there is also a cancellation of contributions linear 
in A, defined in (4.55). The final results are presented in 5 5 .  

C(3) G2 = -- {K[YoQo(l) + Qb(1 )I  + A(I,%( 1) - 42)Q0(1)). A 

5. Low-temperature behaviour: results 

5.1. The correlation function 

In the previous section, we have performed the low-temperature analysis of the exact 
expression, derived in 5 3, for the correlation function x ( q ) .  The final expression for 
this correlation function at low temperature, obtained as explained at the end of 5 4, 
has the form 

x ( q )  = x ( O ) ( q ) +  T X ‘ 1 ’ ( q ) + 0 ( T 2 ) .  (5.1) 
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The zero-temperature value is simply proportional to the correlation function ,y(ca) 
of the H + CO limit of the model 

The function x ( ~ ) ,  given by (4.51), is derived in the appendix, along the lines of [4], 
and given explicitly in (A10). The simple H dependence in (5.2) is reminiscent of the 
results (4.14) for thermodynamic properties. 

The correction x") linear in T has a much more complex and interesting structure. 
It contains two very different types of terms, namely 

p ( q )  = x ( ' . ' ) ( q )  + p ( q ) .  (5.3) 
The first contribution contains only the function x(as) of the H = M limit, and the 

very similar function x C L ) ,  defined in (4.53) 

(5.4) 

where s1 has been defined in ( 4 . 1 3 ~ ) .  Thus ,y(" and xi'.') have an explicit rational H 
dependence, whereas their p dependence cannot be expressed in terms of elementary 
functions. 

The second contribution to (5.3) is obtained in closed form as 

H (1 - w2)(1 - w2r) 
z+cc 

( J +  H)' pr2w8 X ( 1 . 2 '  = 

with 

(1 - w2)(1 - u2r) 
1 - w tanh wy, 

x =  In2( 1 - w2r) - w4r2. 

(5.5a) 

(5.5b) 

We recall that yo  = -J/ H, and that the complex constant w has been defined in (4.19). 
Hence x " . ~ '  is also given by 

( 5 . 5 c )  p 2  ( ln2[p/( l  - r e'"] 
x" '2 '=(J+H)2  " " [  2 s i n 2 q / 2  + r'(2si11q/2)~ l + w  t a n h ( w J / H )  
The dependence of this expression on both p and q is partly coded in the complex 
parameter w. 

We now analyse some particular cases and present some illustrations of the central 
results of the paper, expressed in (5.1-5). 

5.2. The correlation length 

It follows from the expression (5.1-5) of the correlation function that the correlation 
length 6 is discontinuous at zero temperature. 

Indeed, the value of x ( q )  at T=O given in (5.2) yields the correlation length of 
the H = 03 limit at zero temperature. Namely, with the notation (3.24) 

(5.6) 
On the other hand, the term x''.''( q ) ,  linear in temperature, given by ( 5 . 5 ) ,  is clearly 

T = 0, any H. = e-'/f = r 

singular for 

w tanh (wJ/H) = -1. (5.7) 
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Equation (5.7) has a purely imaginary solution w = i t ,  where the real quantity t is 
implicitly given by 

r 
- ( 5 . 8 )  

H 
J tan-'( 1 /  t )  ' 
_ -  

This value of w corresponds to a real value of e'' lying between 0 and  1, and hence 
yields the limit of the correlation length as temperature goes to zero. With the notation 
of (3 .24) ,  we have 

1 + rt2 
l + t 2  

t=-- T+O. (5 .9 )  

This quantity depends on H in a monotonic way, between the bounds r s  6s 1. 
Hence the limit of the correlation length as T + 0 is strictly larger than the T = 0 value, 
for any finite value of H. For large H, we have t 2  - H /  J, so that the H = CO value (5.6) 
has a regular correction 

PJ T+O, H + w .  (5.10) [ =  r+-+. . . H 
For small H, we have t - n H / ( 2 J ) ,  and therefore the correlation length diverges as 

T+0,  H + 0 .  
4 J 2  

5-rrZpHZ (5.11) 

This behaviour has a simple explanation: 1/[ is proportional to the strength of disorder 
( h : )  = 2 p H 2 .  

For small p ,  the correlation length scales as l / p  

(5.12) 

The amplitude E has a non-trivial H dependence: t and H are related by ( 5 . 8 ) .  The 
more general analysis of the scaling behaviour of x ( q )  for small values of p and  q 
will be given in § 5.6. 

Figure 1 shows a plot of the quantity 5 =e-"(, against temperature, for p = 0.7, 
and different values of H / J .  The data have been obtained by iterating numerically 
( 3 . 2 7 ) ,  along the lines of § 3.3.  The analytic T+O limit (5.9) is very well reproduced. 
The arrow indicates the zero-temperature value (5.6), which is independent of H, and 
hence the same for all curves. 

5.3. The susceptibility 

The usually defined susceptibility x is just the value at zero wavevector ~ ( 0 )  of the 
correlation function. 

The susceptibility in the H = C O  limit is given in the appendix: 

The value at q = 0 of the related quantity x ( L )  can be deduced from ( 4 . 5 3 ) :  

(5.13) 

(5.14) 

As far as the quantity x"." is concerned, the expansion of ( 5 . 5 ~ )  around q = 0, i.e. 
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I I 1 )  
0 1 2 3 

T 

Figure 1. Plot of 5 = e x p ( - I / t )  against temperature, where 5 is the correlation length, for 
a dilution probability of p = 0.7, and different values of H, indicated on the curves. The 
limit values for T+O, marked by dots, are given by (5.9). At T=O strictly, we have 
5 = r = 0.3, independently of H; this value is indicated by an arrow. 

w 2  = 0, yields 

x ( ' . 2 ) ( o )  = 

The final expression of the susceptibility is simpler for small p,  where it assumes 
the scaling form 

2( J 3  + 3 J 2 H  + 6 J H 2  + 3 H 3 )  T+ a( T 2 )  
3 H 2 ( J +  H ) 2  H 2  

3 ( J + H ) '  J + H  
lim px = 
P+O 

(5.16) 

A factor of In p shows up among the corrections linear in temperature. Logarithms 
of p are already present in the terms of the low-temperature expansion of the free 
energy, such as the zero-temperature entropy, and the specific heat amplitude, given 
in (4.14b, c), and will occur in the scaling form of x ( q )  for small values of p and q, 
presented in § 5.6. 

Figure 2 shows a plot of the susceptibility against temperature, for different values 
of H / J .  We have chosen the value p = 1, corresponding to no dilution. In this limiting 
case, the correlation function vanishes in the T + 0 limit. The straight lines on the 
graph indicate the exact values of the slopes, extracted from (5 .13 -15) .  

5.4. The Edwards-Anderson parameter 

We have recalled in § 1 (see equation (1 .2))  how the Edwards-Anderson order para- 
meter qEA is related to the correlation function ,yo at coinciding points. It is clear from 
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3 t 
HI /=  
0.5 
1 

2 

0 1 2 3 4 
T 

Figure 2. Plot of the usual ( q  = 0) susceptibility x, against temperature, for p = 1, and 
different values of H ,  indicated on the curves. The susceptibility vanishes at T=O,  and 
behaves linearly at low temperature; the slopes of the broken straight lines have been 
extracted from the exact result (5 .13-15) .  

( 1 . 1 ~ )  that this quantity can be determined from the above exact expression of the 
function x( q )  by forgetting about all terms proportional either to ei4 or to its complex 
conjugate in the difference equations derived in § 3. This amounts to setting elq = 0, 
i.e. w2= 1, in the low-temperature analysis, up to § 4.4. 

We obtain 

xo = xbo)+ TXblJ + O( T ~ ) .  

The zero-temperature value is 

with 

P 2  In P 
XI% 1.0 = 3 ( 1 + 7) . 

The value at H = CC has been taken from (A9) of the appendix. 
The correction linear in T is given by 

The contribution of x ( ~ ~  can be derived from (4.53): 

The final expression is again simpler for small p ,  where we have 

(5.17) 

( 5 . 1 8 ~ )  

(5.1 8 b )  

(5.19) 

(5.20) 

(5.21) 
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Figure 3 shows a plot of xo against temperature, for p = 0.25, and different values 
of H /  J. The numerical data, obtained by solving the recursion relations from P 3, are 
in good agreement, up to T /  J -- 0.4, with the exact T + 0 behaviour (5.17-20), indicated 
by straight lines. 

5.5. The p = 1 case 

The low-temperature expansion (5.1-5) of the correlation function simplifies drastically 
in the limiting case where p = 1, corresponding to no dilution: every spin is subjected 
to a non-zero random field. Indeed, if p = 1 and H =CO simultaneously, there is an 
infinite field at each site, and no correlation at all in the system, at any temperature. 
Hence both functions x ( ~ )  and vanish identically. 

We thus obtain the apriori striking result that the correlation function x ( q )  vanishes 
at zero temperature, for all values of H,  when p = l .  In other words, the T=O 
correlations are entirely due to dilution, i.e. to the sites with no random field. This 
behaviour is analogous to that of the zero-temperature entropy S o ,  given in (4.14b), 
which also vanishes for p = 1. 

For any finite value of H, the low-temperature behaviour of the correlation function 
comes entirely from the term x " . ~ ) .  The expansion of ( 5 . 5 )  around its apparent 
singularity at r = 0 easily yields 

1 - w tanh wy, x(9) = 

and the definition (4.19) of w 2  assumes the simpler form 
= 1 - $7. 

1 t H /J= 

I / / 

0 0 5  1 - 1 5  2 
I 

(5.22) 

(5.23) 

Figure 3. Plot of ,yo = 1 - qtA against temperature, where qEA is the Edwards-Anderson 
order parameter, for p = 0.25, and different values of H, indicated on the curves. Both the 
zero-temperature values, and the first correction linear in temperature (broken lines), are 
given in (5.17-20). 
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5.6. Scaling behaviour for small p 

If the fraction p of spins which experience a random field is small, the characteristic 
length between two such spins will be of the order of l /p  >> 1 .  Hence the correlation 
function can be expected to exhibit a scaling behaviour if the wavevector q is scaled 
proportionally to p .  Indeed, in terms of the scaled variable Q such that 

q = p Q  p + 0, Q fixed ( 5 . 2 4 )  

the correlation function given by (5 .1-5)  takes the form 

T HT 12 PX (PQ 1 = (A) [ 1 - (In P + Y )  - J + H  Y (  Q )  + O( T 2 )  (5 .25)  

with the definitions 

2 
X ( Q )  =? [ Q 2 + l n ( l  + 0’) - 2 ~  tan-’ Q ]  

Q 

In’( 1 - i Q )  
(1 + o tanh ( w J /  H) +4 

and the scaling form of the complex constant w reads 

2 Q  =- 
Q + i  

( 5 . 2 6 ~ )  

( 5 . 2 6 6 )  

(5 .27)  

As mentioned in the appendix, the expression ( 5 . 2 6 ~ )  for the function X ( Q )  is 
obtained by replacing in the definition ( 4 . 5 1 )  or (A8) the sum by an  integral. An 
analogous manipulation on ( 4 . 5 3 )  yields the expression of Y (  Q ) .  

In  ( 5 . 2 5 ) ,  one part of the O( T )  corrections renormalises the zero-temperature result, 
whereas the other one involves the more intricate function Y, which admits the 
correlation length of (5.12). The functions X ( Q )  and Y ( Q )  have by far a more 
complicated structure than a simple Lorentzian or Lorentzian squared. For instance, 
their behaviour for a small scaled wavevector Q is 

XCQ, =+-A@+ C( 0 4 )  

2 ( J 3  + 3 J 2 H  + 6 J H ’ +  3 H ’ )  
3 H 3  + O( 0’) Y ( Q )  = 

whereas we have, for large values of Q 

( 5 . 2 8 a )  

( 5 . 2 8 b )  

( 5 . 2 9 ~ )  

The values at Q = 0 of the scaling functions X and Y clearly agree with the expression 
(5.16) of the small-p behaviour of the usual ( q  =0)  susceptibility. 



2176 J M Luck and 7’h M Nieuwenhuizen 

0 2 4 6 
0 

Figure 4. Plot of scaling form XCQ) of the zero-temperature correlation function, defined 
in (5.26~1) and (A8), against the scaled wavevector Q. The full curve shows X(Q) itself; 
the broken curve shows the ‘Lorentzian fit’ defined in the text. 

Figure 4 shows a plot of the leading scaling function X ( Q )  (full curve), against 
the scaled wavevector Q, together with a ‘Lorentzian fit’ (broken curve). The Lorentzian 
curve, given by %(Q)  = 2/( Q’+ 6), fits the exact function in the sense that it has both 
the same value f at Q = 0, and the same leading decay 2/ Q’ for Q+ a. We notice 
that its correlation length is l /&, instead of 1, and  that the coefficient of Q2 in its 
small-Q expansion is, in absolute value, A, instead of &, The form of the other scaling 
function Y ( Q )  is very similar to that of X(Q). If plotted against the variable QE, 
where S is the correlation length amplitude defined in (5.12), Y ( Q )  only exhibits a 
very weak H-dependence, in spite of its rather intricate analytical expression, involving 
the complex quantity W .  

6.  Discussion 

In the present paper, we have derived the exact expression of the correlation function, 
or wavevector-dependent susceptibility, x ( q ) ,  of the one-dimensional random-field 
Ising model, for a particular symmetric distribution of the magnetic fields. Its symmetric 
exponential form (1.3) mimics the diluted binary distribution naturally present e.g. in 
diluted antiferromagnets. Since the model is one dimensional, it is clearly in its 
paramagnetic phase at any finite temperature. One of our motivations was to explore 
the analytic structure of the correlation function x ( q ) ,  in order to see whether an  exact 
calculation yields, at least in some limit, a Lorentzian form. Indeed, it has been shown 
[ 151 that the celebrated ‘ d  + d - 2’ mapping from a random-spin system in dimension 
d onto the corresponding pure model in dimension d - 2  predicts that, in three 
dimensions, the full two-point function is a superposition of a Lorentzian and a 
Lorentzian squared: S ( q )  = A ( q 2 +  (-’)-’+ B ( q ’ +  [ - ’ ) - I .  The connected two-point 
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function, or susceptibility, studied in the present work, is rather expected to be a simple 
Lorentzian: x ( q )  - C(q '+ [ - ' ) - I .  Hence these simple functional forms for S ( q )  and 
x ( q )  are usually used to fit experimental data on random magnetic systems. A recent 
exact study [9] of a lattice gas model has also shown that the correlation function 
S ( q )  of a random system can be a pure Lorentzian squared at zero temperature, even 
in one dimension. In higher dimensions, various approaches, like e.g. linear response 
theory, also lead to such simple forms. See [16] for a recent review of the subject. 

The interest of the exact solution at finite temperature, described in $ 3, is twofold. 
Indeed, it provides an  efficient algorithm for obtaining numerical values, at finite 
(moderate or high) temperature, of the correlation function, and related quantities, 
such as the correlation length, or the Edwards-Anderson order parameter. On the 
other hand, we have been able to extract from the exact solution the low-temperature 
behaviour of the various physical quantities of interest. The technical part of the 
derivation is presented in $ 4 ,  whereas results are discussed in $ 5 .  The leading 
corrections to the zero-temperature values are evaluated. They are linear in temperature, 
just as for thermodynamic quantities, sutdied previously by the authors in [ 101. This 
smooth dependence is related to the absence of a gap in the excitation spectrum, which 
may be due to the continuous nature of the random field distribution. To our knowledge, 
the question whether there is a gap in the case of (diluted) binary disorder is still open. 

The main features of the results are the following. First of all, we d o  not find any 
simple form for the correlation function, neither at finite temperature, not at zero 
temperature, even in its scaling form in the p + O  limit of a very diluted system. 

It is instructive to consider first the H =cc limit of our model, already studied in 
[4]. In this limiting case, any non-zero random field pins the spin on which it acts, 
thus breaking the chain into an  infinity of independent finite systems. This is why the 
problem can be solved by direct enumeration. This method has been used in [4] to 
calculate both correlation functions S ( q )  and ,y(q).  The results concerning the second 
function are recalled in the appendix. At any finite temperature, x ( q )  is an infinite 
sum of lattice Lorentzians. For large distance, the correlation decays as a simple 
exponential, since it is obviously dominated by the first of these Lorentzians, i.e. that 
with the smallest 'width', and more generally by the complex singularity with the 
smallest imaginary part. However, the infinite series does contribute to the structure 
of the correlation function. In other words, for any fixed (real) value of the wavevector 
q, the correlation function is mostly determined by the behaviour of the correlations 
at finite distance in real space, and not only by their asymptotic decay. At zero 
temperature, the infinite series of poles merges into a logarithmic branch cut, and  the 
exponential decay of the correlation is multiplied by the squared inverse of distance, 
as stated in (A13). This phenomenon, which has been overlooked in [4], is responsible 
for the non-trivality of the zero-temperature correlation function, even in the scaling 
regime at p + O .  The full two-point function S ( q )  exhibits the very same kind of 
behaviour. A careful analysis of the expressions given in [4] indeed shows that the 
zero-temperature limit of S ( q )  also involves a logarithmic branch cut. Hence, even in 
the small-p scaling regime, its structure is again more complicated than the sum of a 
Lorentzian and  a Lorentzian squared, in contradiction with the claims of [4]. 

For finite values of the strength H of the random fields, the zero-temperature value 
of the correlation function is simply proportional to that of the H =cc limit, and has 
therefore the same structure. The behaviour at small non-zero temperature is very 
different. Indeed, the correlation function has corrections linear in T, rather than 
proportional to exp( - 2 p J ) .  These linear terms vanish in the H + 00 limit. Moreover, 
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their behaviour in the limit of a small probability involves powers of Ilnpl, just as 
thermodynamic quantities. The correlation length is discontinuous at zero temperature. 
Its T = 0 value is independent of H, and therefore equal to the value for H = E. Its 
T + 0 limit has a strong and non-trivial H -dependence; it is larger than the T = 0 value, 
because spins which are subjected to finite random fields do contribute to correlations 
at any finite temperature. 

We end up by mentioning some related questions, which the present paper leaves 
open. If a uniform external field is superimposed on the symmetric random fields, the 
model is in principle still exactly soluble, although quite some complications would 
enter the present analysis, already rather heavy. It would also be desirable to find an 
efficient way of evaluating the full two-point function S (  q ) ,  with or without an external 
magnetic field. 

Acknowledgments 

Part of this work has been done during visits of JML to the universities of Oxford and 
Edinburgh, where he was supported by the French-British prize. ThMN is grateful 
to CEN Saclay and to the University of Edinburgh for their hospitality. It is also a 
pleasure to thank G Forgacs for very useful discussions during early stages of this work. 

Appendix. The H =a limit 

This appendix is devoted to a detailed study of the H = CO limit of our exactly soluble 
model. As we have mentioned in 0 1,  the distribution of the random fields becomes 
very simple in that limit: 

-03 with probability p/2  

+CO with probability p / 2 .  
h n = [  0 with probability r 

This limit case has been studied, using a direct enumeration approach, by Grinstein 
and Mukamel, in [4]. For sake of consistency with the text, the correlation function 
of the H = CO limit is denoted in this appendix by x ( ~ ) , / ,  and its Fourier transform by 
,yCm,(q). The central result of [4] is that ,Y(=),/ can be expressed in terms of one- and 
two-spin correlations of the pure Ising model, evaluated in finite systems, of length 
N, with appropriate boundary conditions 
~ ( m ) , / = f  C P 2 N+/-1 C [ ( n ( T n n ( T n + , ) + N + / + ( n ( T n ( T n ~ / ) N + /  

N 20 n z o  

- ( g n )  L + /( c n  + 1 )  "N + / - ( u n  ) N + /( u n  + 1 )  N +/ I  
The explicit values of the correlations 

yield after some manipulations 
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The second sum can be performed exactly, and equals ( N  + 1)( 1 + T ~ ~ )  - 
2( 1 - T ' ~ + ' ) / (  1 - T ~ )  The first sum can be rearranged by means of the expansion 
(1 + z)/( 1 - z)' = Zaao (2a + 1)z". We obtain 

This expression yields 

The analytic structure of X ( m , ( q )  is very clearly read from this expression. The 
correlation function has an infinity of simple poles, located at e*i9 = r T Z a + l  , labelled 
by the so-far abstract expansion index a 3 0. Each pole originates in a component of 
x ( ~ ) , ~  that decays exponentially as ( ~ T ~ @ + I ) ' " .  Hence ,y(cc),l can be considered as the 
superposition of an infinity of (lattice) Lorentzians. The term with a = 0 is decaying 
the slowest; hence it determines the correlation length 

r7. (A7) 5 = = 

As temperature goes to zero, the sequence of poles merges at eiiq = r, and produces 
a more complex behaviour. The T = 0 correlation function can be studied either directly 
from (A6), or from the following expression, that can be derived from (A4): 

The value of x ( ~ ) , ~  at T = 0 is easily deduced from this last equation 

l+--). P2 In P 

The rest of the calculation is more lengthy. After a good deal of simplification, our 
final expression for the function ,y(co)(q) at T = 0 becomes 

with the definition 

The zero-temperature limit (A10) cannot be expressed in terms of elementary 
functions. The function Q(z) has a singularity at z = 1, of the form 

@s8(z) - ( l -z ) [ ln( l -z ) - l ] .  (A121 
Hence the correlation function X c i F , ( q )  has logarithmic branch cuts at e*I4 = r, which 
are the accumulation points of the above-mentioned poles. Nevertheless its value at 
zero wavevector is simple: ~ ( ~ ~ ( 0 )  = ( 2 - p  -p2)/(6p).  More interesting is the decay of 
the correlation at large distance. This behaviour is dominated by the singularity (A12), 
which yields 
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This expression can also be derived directly from (A8). The expected exponential 
decay is corrected by the squared inverse distance. This effect, which occurs only at 
T = 0 strictly, has been overlooked in [4]. 

The zero-temperature correlation function has a scaling form in the p + 0 limit. 
For small p ,  the typical distance between two sites with non-zero random fields diverges 
as l/p, and hence the wavevector should be scaled as p .  This property is in fact valid 
for any finite value of H, as explained in 0 5.5. In the present case, if we insert q = p Q  
in (AlO), the expression simplifies for p + 0. We obtain 

(A141 
2 

~ ~ p x i s , ( p Q ) = X ( Q ) = a [ Q 2 + l n ( l + Q 2 ) - 2 Q  tan-’ 91. Q 
This last expression can also be derived by replacing the sum in the RHS of (A8) 

by an integral. It is worth noticing that, even in this scaling limit, the correlation 
function is highly non-trivial. I t  is particularly clear from the behaviour of the scaling 
function X ( Q )  for small and large Q, given in (5.280) and (5.290), that this is not a 
simple function, such as the combination of a Lorentzian and a Lorentzian squared. 

The above-mentioned logarithmic branch points are still present in X (  Q ) ,  at Q = *i. 
They are reponsible for the following long-distance decay of the correlation in the 
p + 0 limit: x ( ~ ) , !  - 2 e-””/( pl)’ ,  which is clearly the scaling form of (A13). 
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